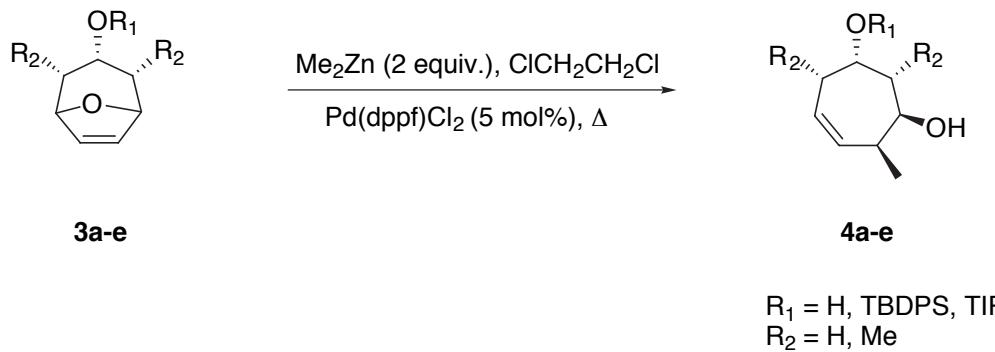

**Enantioselective Ring Opening of Aza and Oxabicyclic Alkenes with
Mark Haylock*** Sheldon Hiebert, Jean-Luc Renaud

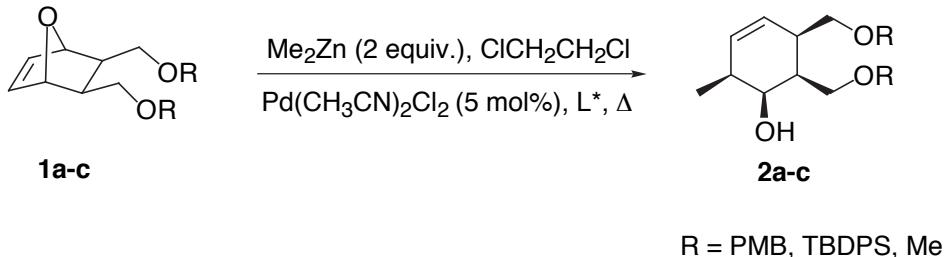
*Department of Chemistry, University of Toronto
Toronto, Ontario, M5S 3H6 Canada*

Supplementary Material

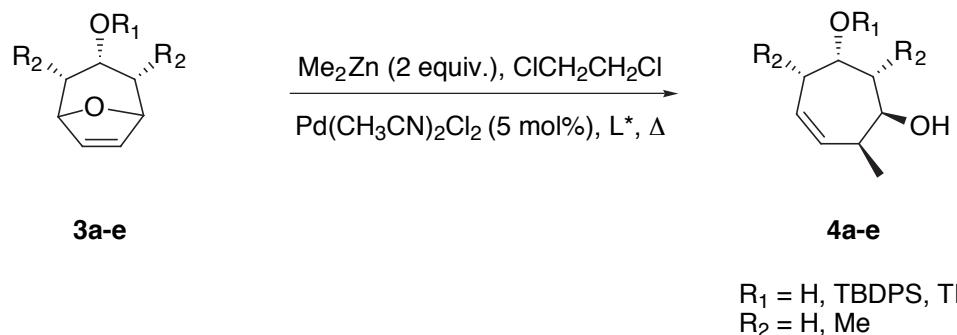
The following includes general experimental procedures, specific details for representative reactions, and isolation and spectroscopic information for the compounds prepared. All ^1H and ^{13}C NMR spectra were recorded using a Varian XL 400 spectrometer. IR spectra were obtained using a Nicolet DX FT-IR spectrometer. High resolution mass spectra were obtained on a VG 70-250S (double focusing) mass spectrometer at 70 eV.


General Procedure for the Alkylative Ring Opening of [2.2.1] and [3.2.1] Oxabicyclic Alkenes.

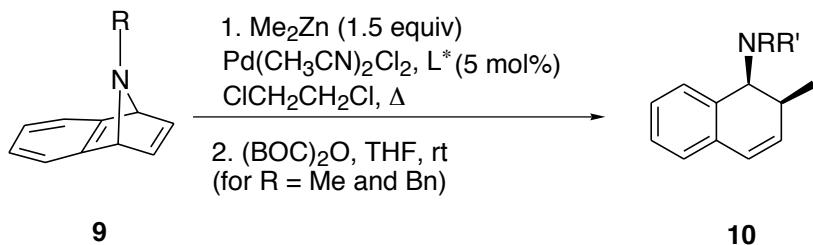
$\text{R} = \text{PMB, TBDPS, Me}$


To an orange solution of [2.2.1] alkene **1** (1 mmol) and (bis(diphenylphosphino)-ferrocenyl)dichloropalladium (5 mol%) in distilled refluxing dichloroethane (30 mL) was added, under argon a solution of dimethylzinc (2.0M in toluene). The resulting solution

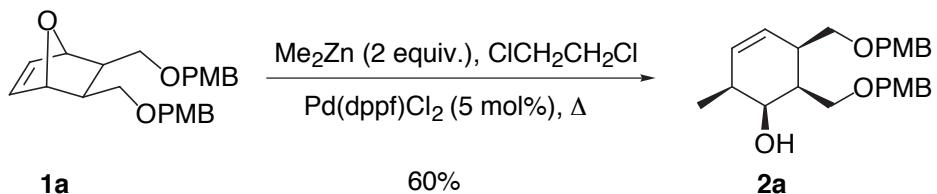
was allowed to reflux until completion by TLC analysis. After cooling to room temperature, the flask was opened to air and a few drops of water were added. This solution was stirred for half an hour, filtered through a short plug of celite and concentrated. The crude mixture was purified by flash chromatography on silica gel to afford cyclohexenol **2**.



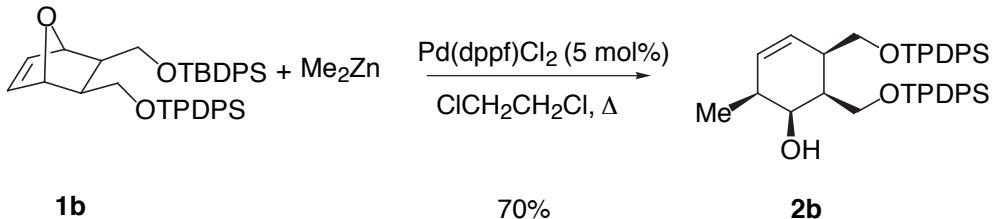
To an orange solution of [3.2.1] alkene **3** (1 mmol), zinc triflate (1 mmol) and (bis(diphenylphosphino)ferrocenyl)dichloropalladium (5 mol%) in distilled refluxing dichloroethane (30 mL) was added, under argon a solution of dimethylzinc (2.0M in toluene). The resulting solution was allowed to reflux until completion by TLC analysis. After cooling to room temperature, the flask was opened to air and a few drops of water were added. This solution was stirred for half an hour, filtered through a short plug of celite and concentrated. The crude mixture was purified by flash chromatography on silica gel to afford cyclohexenol **4**.


General Procedure for the Enantioselective Alkylation of [2.2.1] and [3.2.1] Oxabicyclic Alkenes and Azabenzonorbornadienes.

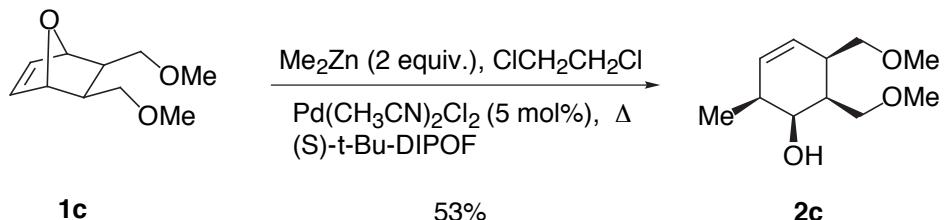
A flame dried round bottom flask was charged, under argon, with bis(acetonitrile)palladium dichloride (5 mol%) and the appropriate ligand (5 mol%). 1 mL of distilled dichloroethane was added and the solution stirred at room temperature for two hours. To this solution was added at room temperature *via* canula a solution of the suitable oxabicycle alkene **1** (1 mmol) in dichloroethane (30 mL). This solution was warmed to reflux and a solution of dimethylzinc (2.0M in toluene) was then added. The resulting solution was warmed until completion by TLC analysis. The flask was opened to air and a few drops of water were added. This solution was stirred for half an hour, filtered through a short plug of celite and concentrated. The crude mixture was purified by flash chromatography on silica gel to afford the alcohol **2**.


A flame dried round bottom flask was charged, under argon, with bis(acetonitrile)palladium dichloride (5 mol%) and the appropriate ligand (5 mol%). 1 mL of distilled dichloroethane was added and the solution stirred at room temperature for two hours. To this solution was added at room temperature *via* canula a solution of the suitable oxabicyclic alkene **3** (1 mmol) and zinc triflate (1 mmol) in dichloroethane (30 mL). This solution was warmed to reflux and a solution of dimethylzinc (2.0M in toluene) was then added. The resulting solution was warmed until completion by TLC analysis. The flask was opened to air and a few drops of water were added. This solution was stirred for half an hour, filtered through a short plug of celite and concentrated. The crude mixture was purified by flash chromatography on silica gel to afford the alcohol **4**.

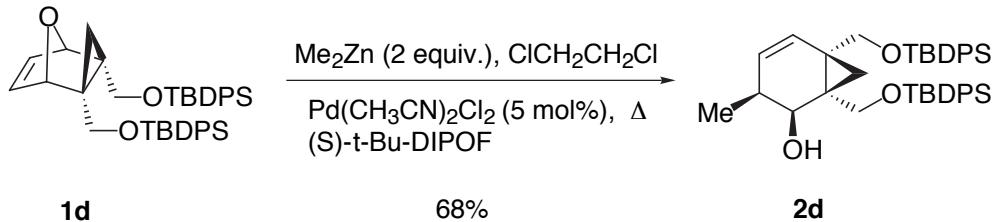
A flame dried round bottom flask was charged, under argon, with bis(acetonitrile)palladium dichloride (5 mol%) and the appropriate ligand (5 mol%). 1 mL of distilled dichloroethane was added and the solution stirred at room temperature for two hours. To this solution was added at room temperature *via* canula a solution of the suitable azabenzonorbornadiene **9** (1 mmol) in dichloroethane (30 mL). This solution was warmed to reflux and a solution of dimethylzinc (2.0M in toluene) was then added. The resulting solution was warmed until completion by TLC analysis. The flask was opened to air and a few drops of water were added. This solution was stirred for half an hour, filtered through a short plug of celite and concentrated. For $\text{R} = \text{methyl}$ and benzyl the crude was dissolved in THF (2 ml) and $(\text{BOC})_2\text{O}$ (2 mmol) added and stirred overnight. Ether was then added


and then washed with sat. NaHCO_3 (aq.). This was dried (Na_2SO_4), evaporated, and the crude mixture was purified by flash chromatography on silica gel to afford the amine **10**.

(1S, 2S, 5R, 6R)-5,6-Bis(*p*-methoxybenzyloxymethyl)-2-methyl-cyclohex-3-en-1-ol (2a)

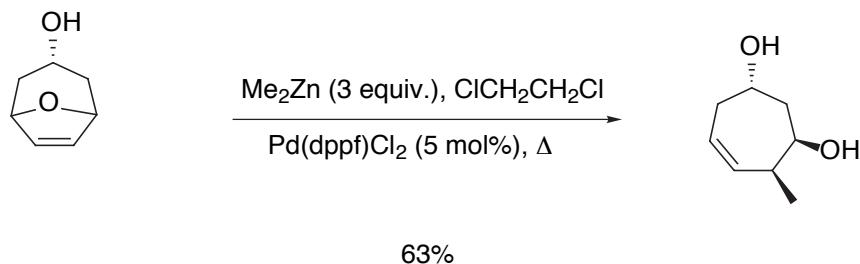

The reaction was carried out as in the general procedure using substrate **1a** (50 mg, 0.13 mmol), Me₂Zn (2.0 M in toluene, 0.10 mL, 0.20 mmol) and Pd(dppf)Cl₂ (5.4 mg, 0.007 mmol). The crude product was purified by flash chromatography on silica gel (40% Et₂O in hexanes) to give the product, **2a**, (32.5 mg, 60%) as an oil. Enantioselective addition using (S)-iPr-DIPOF gave the product in 93% yield. The ee was determined to be 90% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 5% iPrOH in hexanes were 13.5 min. (major) and 17.4 min. $R_f = 0.39$ on silica gel (hexanes : ethyl acetate 7 : 3); IR (neat) 3403 (s), 2999 (s), 2860 (s), 1607 (s), 1515 (s), 1460 (m), 1247 (s), 1078 (s), 821 (s), 759 (s) cm^{-1} ; ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.20 (m, 4H), 6.89–6.87 (m, 4H), 5.52 (AB, $J = 10.4$ Hz, 2H), 4.49, 4.23 (AB, $J = 11.8$ Hz, 2H), 4.33 (d, $J = 10.8$ Hz, 2H), 4.06 (d, $J = 10.4$ Hz, 1H), 3.80 (s, 6H), 3.64 (d, $J = 9.6$ Hz, 1H), 3.54 (m, 1H), 3.45 (m, 2H), 3.37 (m, 1H), 2.54 (m, 1H), 2.36 (m, 1H), 2.24 (m, 1H), 1.08 (t, $J = 6.8$ Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 159.3, 131.9, 130.5, 130.0, 129.5, 129.2, 127.4, 113.9, 113.8, 73.0, 72.9, 70.5, 67.8, 67.7, 55.3, 41.9, 36.4, 35.9, 17.0; HRMS calcd for C₂₅H₃₂O₅ (M)⁺: 412.2250. Found: 412.2243

(1S, 2S, 5R, 6R)-5,6-Bis(*tert*-butyldiphenylsilyloxy)methyl)-2-methylcyclohex-3-en-1-ol (2b)



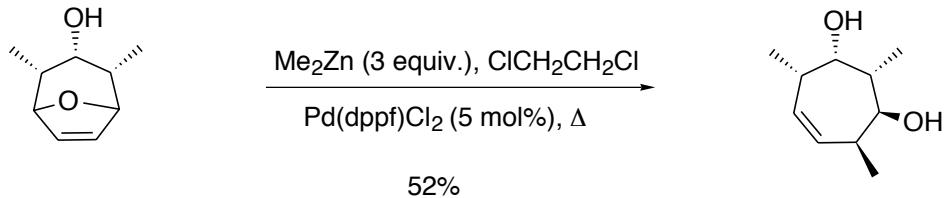
The reaction was carried out as in the general procedure using substrate **1b** (50 mg, 0.0793 mmol), Me₂Zn (2.0 M in toluene, 0.08 mL, 0.16 mmol) and Pd(dppf)Cl₂ (2.7 mg, 0.004 mmol). The crude product was purified by flash chromatography on silica gel (10% Et₂O in hexanes) to give the product, **2b**, (35 mg, 70%) as a colorless oil. Enantioselective addition using (S)-tBu-DIPOF gave the product in 93% yield. The ee was determined to be 98% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 0.4% iPrOH in hexanes were 3.7 min. (major) and 4.3 min. $R_f = 0.25$ on silica gel (hexanes : ether 95 : 5); IR (neat) 3415, 3063, 2951, 2873, 1469, 1430, 1110, 997, 825, 741, 702 cm^{-1} ; ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.60 (m, 8H), 7.45-7.29 (m, 12H), 5.59-5.51 (m, 2H), 4.20 (d, $J = 10.8$ Hz, 1H), 4.03-3.93 (m, 2H), 3.79 (br s, 1H), 3.75 (dd, $J = 10.8, 1.6$ Hz, 1H), 3.50 (dd, $J = 10.8, 3.2$ Hz, 1H), 2.50 (m, 1H), 2.34 (q, $J = 7.6$ Hz, 1H), 2.31-2.29 (m, 1H), 1.16 (d, $J = 7.2$ Hz, 3H), 1.02 (s, 9H), 1.00 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 136.2, 135.9, 135.8, 135.7, 134.1, 134.0, 132.7, 132.6, 132.5, 130.1, 130.0, 129.8, 128.0, 127.9, 127.6, 67.1, 64.3, 62.8, 44.7, 37.7, 36.7, 27.1, 26.9, 19.5, 19.4, 17.3; HRMS calcd for C₃₇H₄₃O₃Si₂ (M-C₄H₉)⁺: 591.2751.

Found: ^{59}Si 2759, ^{13}C 591, 2759. **(1S, 2S, 5R, 6R)-5,6-Dimethoxymethyl-2-methyl-cyclohex-3-en-1-ol (2c)**


The reaction was carried out as in the general procedure using substrate **1c** (37 mg, 0.20 mmol), Me₂Zn (2.0 M in toluene, 0.15 mL, 0.30 mmol), Pd(CH₃CN)₂Cl₂ (2.6 mg, 0.01 mmol) and (S)-*t*Bu-DIPOF (6.0 mg, 0.012 mmol). The crude product was purified by flash chromatography on silica gel (40% Et₂O in hexanes) to give the product, **2c**, (20 mg, 53%) as a colorless oil. The ee was determined to be 91% using HPLC analysis on a CHIRACEL OD column, λ = 254 nm. Retention times in 1% iPrOH in hexanes were 6.9 min. (major) and 7.6 min. R_f = 0.21 on silica gel (hexanes : ethyl acetate 4 : 1); IR (neat) 3415, 2871, 1462, 1130 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.60(td, J = 11.0, 3.2 Hz, 1H), 5.48 (d, J = 11.0 Hz, 1H), 3.96 (d, J = 10.3 Hz, 1H), 3.64 (br d, J = 10.3 Hz, 1H), 3.57 (d, J = 7.9 Hz, 2H), 3.43 (br s, 1H), 3.38 (s, 6H), 2.55-2.51 9m, 1H), 2.36 (qd, J = 7.7, 1.6 Hz, 1H), 2.30-2.20 (m, 1H), 1.09 (d, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 132.2, 127.2, 73.3, 71.3, 67.4, 59.1, 59.0, 41.8, 36.5, 36.1, 17.0; HRMS calcd for C₂₅H₃₂O₅ (M)⁺: 199.133420. Found: 199.132813; M (e/z) 199, 183, 167, 151, (1S, 12S, 18S, 9S)-31,36-Bis(*tert*-butyldiphenylsilyloxy)methyl)-7-methyl-tricyclo[4.1.0]hept-4-en-1-ol (2d)

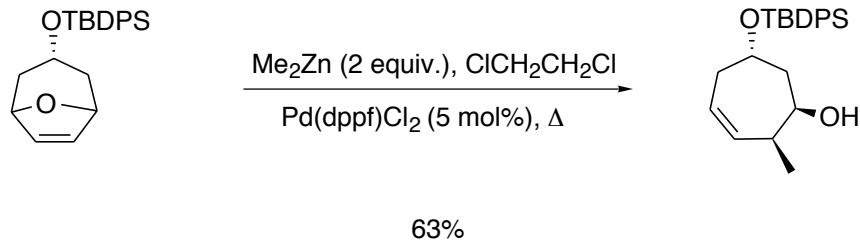
The reaction was carried out as in the general procedure using substrate **1d** (65 mg, 0.10 mmol), Me₂Zn (2.0 M in toluene, 0.075 mL, 0.15 mmol), Pd(CH₃CN)₂Cl₂ (1.3 mg,

0.005 mmol) and (*S*)-*t*Bu-DIPOF (3.0 mg, 0.006 mmol). The crude product was purified by flash chromatography on silica gel (40% Et₂O in hexanes) to give the product, **2d**, (44 mg, 68%) as a colorless oil. The ee was determined to be 97% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 0.5% iPrOH in hexanes were 8.5 min. and 9.7 min (major). $R_f = 0.19$ on silica gel (hexanes : ethyl acetate 95 : 5); IR (neat) 3666, 3467, 3065, 3061, 2954, 2864, 1961, 1895, 1828, 1656, 1589, 1470, 1426, 1388, 1363, 1264, 1100 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.50 (m, 8H), 7.41-7.24 (m, 12H), 5.82 (dd, *J* = 9.7, 1.8 Hz, 1H), 5.45 (dd, *J* = 9.7, 4.4 Hz, 1H), 4.39 (dd, *J* = 4.7, 4.0 Hz, 1H), 3.97 (AB, *J_{AB}* = 10.8 Hz, 1H), 3.69 (dd, *J* = 11.0, 4.6 Hz, 2H), 3.43 (AB, *J_{AB}* = 10.8 Hz, 1H), 2.68 (d, *J* = 4.0 Hz, 1H), 2.70-2.60 (m, 1H), 1.06 (d, *J* = 5.5 Hz, 3H), 1.04 (s, 9H), 0.96 (d, *J* = 4.8 Hz, 1H), 0.95 (s, 9H), 0.48 (96 (d, *J* = 5.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 135.8, 135.7, 135.6, 134.9, 133.7, 133.6, 133.2, 133.1, 129.9 (2C), 129.8, 129.7, 129.6, 127.9 (2C), 127.7 (2C), 127.6 (2C), 72.1, 69.4, 67.3, 34.2, 29.2, 27.0 (3C), 26.9 (3C), 26.7, 24.7, 19.3, 16.8; HRMS calcd for C₄₂H₅₁O₂Si₂ (M-OH)⁺: 643.3428 Found: 643.3440


(1*S*, 3*S*, 7*S*)-7-methyl-cyclohept-5-en-1,3-diol (4a)

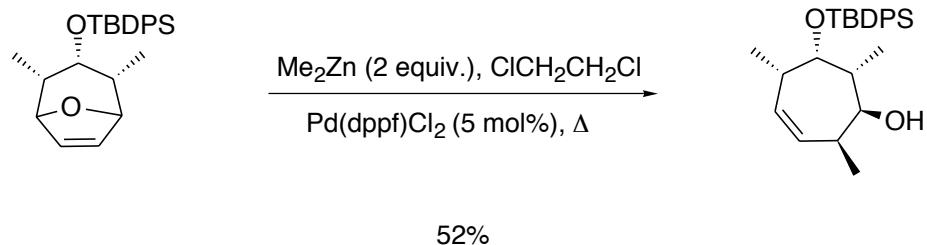
The reaction was carried out as in the general procedure using substrate **3a** (50 mg, 0.40 mmol), Me₂Zn (2.0 M in toluene, 0.60 mL, 1.20 mmol) and Pd(dppf)Cl₂ (16 mg, 0.02 mmol). The crude product was purified by flash chromatography on silica gel (60%

EtOAc in hexanes) to give the product, **4a**, (36 mg, 63%) as a white solid. Enantioselective addition using (S)-i-Pr-DIPOF gave the product in 84% yield. The ee, after protection of the diol with benzoyl chloride, was determined to be 90% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 1.5% iPrOH in hexanes were 7.8 min. (minor) and 8.3 min (major). $R_f = 0.32$ on silica gel (pure EtOAc); mp = 88-90 °C ; IR (solution in CH_2Cl_2) 3683, 3620, 3147, 2972, 2901, 1813, 1780, 1645, 1479, 1465, 1377, 1170, 1096, 934, 769 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 5.84 (m, 1H), 5.39 (ddd, $J = 10.8, 4.4, 2.2$ Hz, 1H), 3.84-3.77 (m, 2H), 2.63-2.56 (m, 1H), 2.44-2.34 (m, 3H), 1.73 (ddd, $J = 13.5, 10.8, 2.4$ Hz, 1H), 1.44 (d, 1H, OH), 1.39 (s, 1H, br, OH), 1.15 (d, $J = 7.2$ Hz, 3H) ; ^{13}C NMR (100 MHz, CDCl_3) δ 135.4, 127.7, 72.0, 64.0, 47.3, 38.2, 37.7, 19.1 ; HRMS calcd for $\text{C}_8\text{H}_{14}\text{O}_2$ (M^+): 142.099380. Found: 142.098968. M (e/z) : 142, 124, 109, 95, 81, 73, 69, 55.


(1S, 2S, 3S, 4S, 7S)-2,4,7-trimethyl-cyclohept-5-en-1,3-diol (4b)

The reaction was carried out as in the general procedure using substrate **3b** (50 mg, 0.324 mmol), Me_2Zn (2.0 M in toluene, 0.49 mL, 0.97 mmol) and $\text{Pd}(\text{dppf})\text{Cl}_2$ (13.0 mg, 0.016 mmol). The crude product was purified by flash chromatography on silica gel (40% EtOAc in hexanes) to give the product, **4b**, (27 mg, 52%) as an oil. Enantioselective addition using (S)-i-Pr-DIPOF gave the product in % yield. The ee, after monoprotection of the alcohol with TBDPSCl, was determined to be 95% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 0.5% iPrOH in hexanes were 4.3

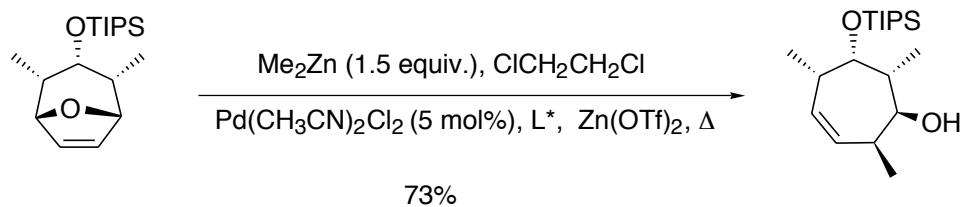
min. (minor) and 4.8 min (major). $R_f = 0.26$ on silica gel (hexanes : ethyl acetate 6 : 4); IR 3426, 3010, 2929, 1457, 1377, 1204, 1152, 1108, 919, 732 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 5.57 (ddd, $J = 11.4, 6.6, 2.9$ Hz, 1H), 5.13 (dd, $J = 11.4, 2.6$ Hz, 1H), 3.48 (dd, $J = 7.7, 2.9$ Hz, 1H), 3.43 (d, $J = 1.1$ Hz, 1H), 2.60 (m, 2H), 2.11 (br s, 2H), 1.87 (m, 1H), 1.05 (d, $J = 8.1$ Hz, 3H), 1.03 (d, $J = 7.3$ Hz, 3H), 1.00 (d, $J = 7.3$ Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 133.0, 132.5, 78.1, 73.6, 42.8, 37.9, 37.7, 20.4, 17.1, 13.9; HRMS calcd for $\text{C}_{10}\text{H}_{18}\text{O}_2$ (M^+): 170.1307. Found: 170.1306; M (EI) : 170, 152, 137, 135, 134.


(1R, 2R, 7R)-(3-*tert*-butyldiphenylsilyloxy)-7-methyl-cyclohept-5-en-1,3-diol (4c)

The reaction was carried out as in the general procedure using substrate **3c** (50 mg, 0.137 mmol), Me_2Zn (2.0 M in toluene, 0.14 mL, 0.28 mmol) and $\text{Pd}(\text{dppf})\text{Cl}_2$ (5.5 mg, 0.007 mmol). The crude product was purified by flash chromatography on silica gel (15% Et_2O in hexanes) to give the product, **4c**, (33 mg, 63%) as an oil. Enantioselective addition using (*S*)-*t*-Bu-POX and zinc triflate gave the product in 60% yield. The ee was determined to be 90% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 0.5% iPrOH in hexanes were 9.4 min. (major) and 15.6 min (minor). $R_f = 0.27$ on silica gel (hexanes : ethyl ether 8 : 2); IR (neat) cm^{-1} 3443, 2954, 2923, 2867, 1649, 1451, 1109, 1067; ^1H NMR (400 MHz, CDCl_3) δ 7.68-7.65 (m, 4H), 7.44-7.34 (m, 6H),

5.62-5.56 (m, 1H), 5.30-5.25 (m, 1H), 3.86-3.81 (m, 1H), 3.73 (br s, 1H), 2.58-2.48 (m, 1H), 2.40 –2.22 (m, 3H), 1.86 (td, J = 10.4, 2.8 Hz, 1H) ; ^{13}C NMR (100 MHz, CDCl_3) δ 135.8, 135.1, 134.4, 134.2, 129.6, 129.5, 127.9, 127.5, 72.4, 65.8, 47.6, 38.2, 38.0, 26.9, 19.1, 18.9 ; HRMS calcd for $\text{C}_{20}\text{H}_{23}\text{O}_2\text{Si}$ ($\text{M}-\text{C}_4\text{H}_9$) $^+$: 323.1467. Found: 323.1482.

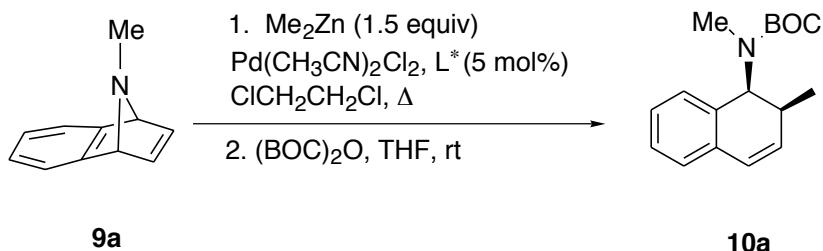
(1R, 2S, 3R, 4R, 7R)-(tert-butyldiphenylsilyloxy)-2,4,7-trimethyl-cyclohept-5-enol (4d)

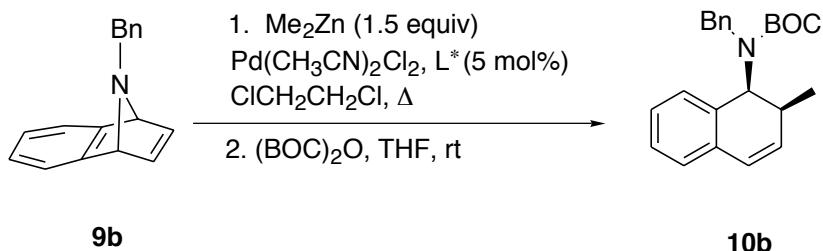


The reaction was carried out as in the general procedure using substrate **3d** (50 mg, 0.127 mmol), Me_2Zn (2.0 M in toluene, 0.13 mL, 0.26 mmol) and $\text{Pd}(\text{dppf})\text{Cl}_2$ (10.6 mg, 0.013 mmol). The crude product was purified by flash chromatography on silica gel (10% Et_2O in hexanes) to give the product, **4d**, (27 mg, 52%) as an oil. Enantioselective addition using (*S*)-*t*-Bu-DIPOF and zinc triflate gave the product in 70% yield. The ee was determined to be 90% using HPLC analysis on a CHIRACEL OD column, λ = 254 nm.

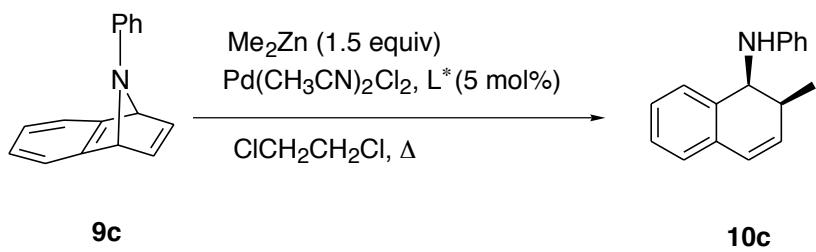
Retention times in 0.5% iPrOH in hexanes were 8.1 min. (major) and 8.9 min (minor). R_f = 0.30 on silica gel (hexanes : ethyl ether 9 : 1) ; IR (neat) 3056, 2972, 2880, 1726, 1669, 1588, 1550, 1458, 1289, 906 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 7.68-7.65 (m, 4H), 7.46-7.32 (m, 6H), 5.42 (A of ABX, J = 6.4 Hz, 1H), 5.33 (B of ABX, J = 5.2 Hz, 1H), 3.93 (t, J = 3.2 Hz, 1H), 3.65 (d, J = 5.6 Hz, 1H), 2.72 (quint, J = 6.8 Hz, 1H), 2.40 (quint, J = 6.8 Hz, 1H), 2.06-1.99 (m, 1H), 1.57 (br s, OH), 1.15 (d, J = 7.6 Hz, 3H),

1.07 (s, 9H), 1.02 (d, $J = 7.2$ Hz, 3H), 1.00 (d, $J = 7.2$ Hz, 3H) ; ^{13}C NMR (100 MHz, CDCl_3) δ 136.1 (4C), 134.5, 133.9, 133.5, 131.5, 129.6, 129.5, 127.5 (2C), 127.3 (2C), 76.3, 73.8, 44.8, 41.3, 36.8, 27.3 (3C), 19.7, 17.1, 16.5, 15.2 ; HRMS calcd for $\text{C}_{22}\text{H}_{27}\text{O}_2\text{Si}$ ($\text{M}-\text{C}_4\text{H}_9$) $^+$: 351.1780 Found: 351.1762.


(1R, 2S, 3R, 4R, 7R)-3-triisopropylsilyloxy2,4,7-trimethyl-cyclohept-5-enol (4e)


The reaction was carried out as in the general procedure using substrate **3e** (50 mg, 0.161 mmol), Me_2Zn (2.0 M in toluene, 0.12 mL, 0.24 mmol) and $\text{Pd}(\text{dppf})\text{Cl}_2$ (6.5 mg, 0.008 mmol). The crude product was purified by flash chromatography on silica gel (10% Et_2O in hexanes) to give the product, **4e**, (27 mg, 51%) as an oil. Enantioselective addition using (*S*)-*t*-Bu-DIPOF or (*S*)-*i*-Pr-DIPOF gave the product in 73% yield. The ee was determined, after esterification with benzoyl chloride, to be 93% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 0.3% iPrOH in hexanes (flow 0.5 ml/min.) were 17.5 min. (minor) and 20.9 min (major). $R_f = 0.33$ on silica gel (hexanes : ethyl ether 8 : 2) ; IR (neat) 3403, 2945, 2865, 1653, 1461, 1382, 1212, 1089, 887, 854 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 5.65 (ddd, $J = 11.5, 7.5, 1.6$ Hz, 1H), 5.34 (dd, $J = 11.5, 5.3$ Hz, 1H), 4.19 (dd, $J = 5.0, 3.6$ Hz, 1H), 3.65 (td, $J = 7.0, 2.0$ Hz, 1H), 2.73 (m, 1H), 2.51 (quint. d, $J = 7.3, 3.5$ Hz, 1H), 2.26 (quint., $J = 7.0$ Hz, 1H), 1.60 (dd, $J = 7.0, 6.8$ Hz, 1H), 1.17 (d, $J = 7.5$ Hz, 3H), 1.14 (d, $J = 7.3$ Hz,

6H), 1.07 (br s, 18 H) ; ^{13}C NMR (100 MHz, CDCl_3) δ 133.1, 132.0, 77.2, 71.2, 45.6, 42.6, 36.6, 18.4, 17.6, 16.1, 14.4, 12.8 ; HRMS calcd for $\text{C}_{26}\text{H}_{36}\text{O}_2\text{Si}$ (M^+): 326.263281. Found: 326.264109 ; $\text{M}(\text{e/z})$: 309, 283, 265, 135, 123, 103, 95, 75, 61.


(1*S*, 2*S*)-N-BOC-1-methylamino-2-methyldihydronaphthalene (10a)

The reaction was carried out as in the general procedure using substrate **9a** (50 mg, 0.32 mmol), Me_2Zn (2.0 M in toluene, 0.24 mL, 0.48 mmol), $\text{Pd}(\text{CH}_3\text{CN})_2\text{Cl}_2$ (4.1 mg, 0.016 mmol), *t*-Bu-POX (6.2 mg, 0.016 mmol), and $(\text{BOC})_2\text{O}$ (140 mg, 0.64 mmol). The crude product was purified by flash chromatography on silica gel (25% EtOAc in hexanes) to give the product, **10b**, (23 mg, 26%) as an oil. The ee was determined to be >99% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 0.5% iPrOH in hexanes were 3.8 min (major) and 4.4 min. $R_f = 0.19$ on silica gel (hexanes : ethyl acetate 5 : 1); IR (neat) cm^{-1} 3450, 3015, 2971, 2923, 1681, 1649, 1144, 754; ^1H NMR (400 MHz, CDCl_3) δ 7.34–7.07 (m, 4H), 6.41 (m, 1H), 5.76 (m, 1H), 5.53, 5.31 (d, $J = 8.4$ Hz, 1H), 2.81 (m, 1H), 2.45, 2.43 (s, 3H), 1.55, 1.46 (s, 9H), 1.16, 1.15 (d, $J = 7.6$ Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 134.4, 134.2, 133.3, 133.2, 129.8, 129.4, 128.1, 127.9, 127.6, 127.5, 126.2, 127.1, 126.0, 126.0, 79.9, 79.2, 53.3, 52.0, 32.6, 32.5, 30.1, 29.4, 28.6, 28.4, 15.2, 15.0. HRMS calcd for $\text{C}_{17}\text{H}_{23}\text{NO}_2$ (M) $^+$: 273.1729. **(2*S*,1*RS*)-N₂*BOC*2*13*heptamino-2-methyldihydronaphthalene (10b)**

The reaction was carried out as in the general procedure using substrate **9b** (50 mg, 0.21 mmol), Me_2Zn (2.0 M in toluene, 0.16 mL, 0.32 mmol), $\text{Pd}(\text{CH}_3\text{CN})_2\text{Cl}_2$ (2.8 mg, 0.011 mmol), *t*-Bu-POX (4.3 mg, 0.011 mmol), and $(\text{BOC})_2\text{O}$ (92 mg, 0.42 mmol). The crude product was purified by flash chromatography on silica gel (15% EtOAc in hexanes) to give the product, **10b**, (2 mg, 3%) as an oil. The ee was determined to be 98% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 0.5% iPrOH in hexanes were 5.9 min (major) and 6.8 min. $R_f = 0.2$ on silica gel (hexanes : ethyl acetate 5 : 1); IR (neat) cm^{-1} 3427, 2977, 2916, 1685, 1394, 1163, 1116, 754; ^1H NMR (400 MHz, CDCl_3) δ 7.47-7.96 (m, 9H), 6.71 (m, 1H), 6.40 (dd, $J = 9.2, 2.8$ Hz, 1H), 5.77, 5.66 (d, $J = 8.8$ Hz, 1H), 4.15 (AB, $J = 16.0$ Hz, 2H), 2.91 (m, 1H), 1.54, 1.28 (s, 9H), 1.22 (d, $J = 8.0$ Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ ; HRMS calcd for **1S, 2S**-1-phenylamino-2-methylidihydranaphthalene (**10c**) (M) $^+$: . Found:

The reaction was carried out as in the general procedure using substrate **9c** (50 mg, 0.23 mmol), Me_2Zn (2.0 M in toluene, 0.17 mL, 0.34 mmol), $\text{Pd}(\text{CH}_3\text{CN})_2\text{Cl}_2$ (2.9 mg, 0.011 mmol), and *t*-Bu-POX (4.4 mg, 0.011 mmol). The crude product was purified by

flash chromatography on silica gel (5% EtOAc in hexanes) to give the product, **10a**, (49 mg, 92%) as an oil. The ee was determined to be 98% using HPLC analysis on a CHIRACEL OD column, $\lambda = 254\text{nm}$. Retention times in 0.5% iPrOH in hexanes were 9.2 min. and 11.9 min (major). $R_f = 0.6$ on silica gel (hexanes : ethyl acetate 5 : 1); IR (neat) cm^{-1} 3412, 3015, 2962, 1600, 1503, 1310, 1280, 750; ^1H NMR (400 MHz, CDCl_3) δ 7.35 (d, $J = 7.2$ Hz, 1H), 7.22-7.11 (m, 4H), 7.08 (d, $J = 7.6$ Hz, 1H), 6.72-6.80 (m, 3H), 6.48 (d, $J = 9.6$ Hz, 1H), 5.98 (dd, $J = 9.6, 5.2$ Hz, 1H), 4.77 (dd, $J = 10.0, 14.0$ Hz, 1H), 3.97 (d, $J = 10.0$ Hz, 1H), 2.76 (q, $J = 6.4$ Hz, 1H), 1.00 (d, $J = 7.4$ Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 136.2, 133.5, 133.1, 129.4, 127.5, 127.4, 126.9, 126.2, 125.8, 117.4, 113.6, 109.8, 54.8, 32.7, 12.9; HRMS calcd for $\text{C}_{17}\text{H}_{17}\text{N}(\text{M})^+$: 235.1361. Found: 235.1359.